首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6234篇
  免费   684篇
  国内免费   793篇
  2023年   108篇
  2022年   121篇
  2021年   167篇
  2020年   230篇
  2019年   243篇
  2018年   216篇
  2017年   249篇
  2016年   264篇
  2015年   235篇
  2014年   250篇
  2013年   389篇
  2012年   261篇
  2011年   246篇
  2010年   236篇
  2009年   250篇
  2008年   311篇
  2007年   329篇
  2006年   314篇
  2005年   266篇
  2004年   262篇
  2003年   283篇
  2002年   225篇
  2001年   227篇
  2000年   182篇
  1999年   196篇
  1998年   152篇
  1997年   175篇
  1996年   131篇
  1995年   101篇
  1994年   92篇
  1993年   98篇
  1992年   108篇
  1991年   83篇
  1990年   86篇
  1989年   77篇
  1988年   92篇
  1987年   57篇
  1986年   51篇
  1985年   68篇
  1984年   67篇
  1983年   37篇
  1982年   34篇
  1981年   30篇
  1980年   34篇
  1979年   11篇
  1978年   10篇
  1977年   17篇
  1976年   8篇
  1975年   8篇
  1973年   8篇
排序方式: 共有7711条查询结果,搜索用时 906 毫秒
141.
The leaf macroelement profile of fruiting shoots of persimmon was characterized by a modified diagnostic and recommendation integrated system (DRIS), using SLW as a primary determinant of leaf mineral content. Leaf N, P, Ca, and Mg content was positively and linearly correlated with SLW when expressed on leaf area basis (g mm–2). Potassium had a negative and higher correlation to SLW when expressed on %DW basis. Mineral ratios relevant for the DRIS analysis were calculated using all four possible combinations of Area (A) and Weight (W) expressions (A/A, A/W, W/A and W/W) and correlated with leaf SLW. The particular expressions chosen for the DRIS analysis were based on their highest correlation to SLW and included N/K, P/K and Ca/Mg, based on the A/W expression of the respective nutrients and the reciprocal expression (W/A) for all other ratios. Derivation of DRIS norms were based on the mineral profile of highly exposed shoots (SLW of 15.0±0.3 mg cm–2). Calculated indices of gradually less exposed shoots (SLW of 3.8–18.9 mg cm–2) revealed a strong exponential imbalance of N, K and P (increasingly positive) vs Ca and Mg (increasingly negative). The calculated Nutritional Imbalance Index (NII) value of leaves decreased exponentially as shoot leaf SLW decreased. The modified DRIS analysis detected successfully a distinct mineral profile of highly vigorous fruiting water shoots, as compared to regular fruiting shoots of comparable SLW.  相似文献   
142.
Adams  M. L.  Norvell  W. A.  Peverly  J. H.  Philpot  W. D. 《Plant and Soil》1993,155(1):235-238
Leaf reflectance and fluorescence characteristics of soybean (Glycine max cv Bragg) are influenced strongly by Mn availability. This report evaluates the effects of leaflet choice, leaf age, and leaf nodal position on several spectral characteristics. Leaves were obtained from soybeans grown hydroponically under controlled environmental conditions with wide differences in Mn supply. The ratio of constant yield fluorescence (Fo) to variable yield fluorescence (Fv), the ratios of reflectance at 750 nm to 550 nm and that at 650 nm to 550 nm, the position of the "red edge" near 700 nm, and an index of leaf "yellowness" were measured periodically. Increasing leaf age caused increases in the "red edge" and in both reflectance ratios. Leaf "yellowness" and the fluorescence ratio Fo/Fv decreased with leaf age and increased with leaf nodal position, primarily in Mn deficient leaves. Effects arising from leaf choice were smaller than those caused by Mn deficiency.  相似文献   
143.
The relative importance of changes in leaf expansion rate (LER) and leaf conductance (g1) in the control of crop transpiration depends primarily on their sensitivity to soil water deficits. The aim of this paper was to quantify the responses of LER and g1 to soil water deficits in sunflower (Helianthus annuus L.) under conditions of moderate (spring) and high (summer) evaporative demand. Soil water content, g1, and LER were measured in dryland (DRY) and daily-irrigated (WET) crops established on a deep sandy-loam (Typic Xerofluvent) in a Mediterranean environment. There was no difference between g1 of DRY and WET plants (p>0.20) in contrast with a highly significant difference in LER (p<0.001). Even under the harsh conditions of the summer experiment, g1 did not respond to water deficit in a ten-day period in which LER of DRY plants was reduced to approx. 30% of that measured in WET controls. This field study indicates that g1 plays at most a minor role in the control of sunflower transpiration in the pre-anthesis period and confirms the importance of leaf expansion in the regulation of gas exchange of expanding canopies subjected to soil water deficits.  相似文献   
144.
Plant regeneration via somatic embryogenesis in ginger   总被引:5,自引:0,他引:5  
Embryogenic callus cultures of ginger were induced from young leaf segments taken from in vitro shoot cultures. Among the four auxins tested in Murashige & Skoog medium, dicamba at 2.7 M was most effective in inducing and maintaining embryogenic cultures. Efficient plant regeneration was achieved when embryogenic cultures were transferred to Murashige & Skoog medium containing 8.9 M benzyladenine. Histological studies revealed various stages of somatic embryogenesis characteristic of the monocot system. The in vitro-raised plants have been established in soil.Abbreviations BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog - NAA naphthaleneacetic acid  相似文献   
145.
渍水对冬小麦生长的危害及其生理效应   总被引:7,自引:0,他引:7  
小麦受渍后叶片的光合和蒸腾速率迅速下降,而后则显微弱的回升趋势。渍害不仅削弱小麦光合产物的积累,并且改变光合产物在地上部分和根系中的分配比例;植株根/冠比下降,而黄叶的发展与根/冠比的变化呈显著负相关;渍害改变小麦的发育进程,尤其是后期渍害明显促使小麦早衰。认为清水使叶片光合速率降低、光合有效面积损失和衰老加速,从而危害小麦的生长。  相似文献   
146.
Shoot tip culture was used to eliminate white clover mosaic virus (WCMV) and red clover necrotic mosaic virus (RCNMV) from red clover, and clover phyllody disease (CP) and clover red leaf disease (CRL) from white clover. Shoot tips up to 2.4 mm (in some cases 3 mm) could regenerate plants free from the pathogens, but the efficiency of elimination, at least for WCMV and CRL, tended to decrease with increasing shoot tip size. The efficiency of plant regeneration from shoot tips generally improved with increasing tip size.  相似文献   
147.
S-ethyldipropylthiocarbamate (EPTC) applied as a soil treatment or over-the-top spray on cabbage plants (Brassica oleracea L.) caused the leaves to turn ‘glossy’ for as long as 30 days. EPTC-induced glossy plants were damaged significantly less than untreated plants by diamondback moth,Plutella xylostella (L.), imported cabbage worm,Pieris rapae (L.), and cabbage looper,Trichoplusia ni (Hbn.). Reductions in damage were equivalent to those obtained from treatment with permethrin. When used in combination with permethrin, EPTC provided additive control of damage by these pests. Our calculations show EPTC-induced resistance to be cost-effective. This use of EPTC has several limitations, however. Younger plants (<9 leaves) were killed or injured by the herbicide. The growth of older plants was not affected, but plants did not become glossy for ca. 10 days after they were treated with EPTC. The crop must be protected with insecticides until the plants are mature enough to treat with EPTC, and until treated plants become glossy. In addition, since the glossy trait is only effective against first instar larvae, populations of later instars on glossy plants must be reduced with an application of insecticide. Finally, EPTC formulations are water-soluble and can be washed away from the plants by heavy rains and irrigation, which may make this use of EPTC impractical in some situations. Where its use is practical, and the indicated precautions are taken, EPTC-induced resistance could reduce dependence on chemical insecticides and reduce selection for insecticide resistance in diamondback moth.  相似文献   
148.
The effect of some environmental factors on the lipid metabolism was studied in two chemotypes of Rosmarinus officinalis L. Epicuticular hydrocarbons (EH), epicuticular fatty acids (EFA), whole leaf fatty acids (WLFA) and essential oils (EO) were extracted and analysed by GC-MS during winter 1991–1992 and related to temperature and moisture variations. Leaf fresh and dry wts were determined along with some morphophysiological parameters such as specific leaf weight (SLW) and specific leaf area (SLA). Leaf areas were calculated by image analysis and statistically processed as for chemical data. The results indicated that in R. officinalis the response to some environmental factors, with particular reference to temperature and moisture, was an increase in epicuticular hydrocarbons and a decrease in epicuticular fatty acids, leaf fatty acids and essential oils. Qualitative changes in the chemical composition of the above lipid classes were found to be correlated with temperature changes. From a chemosystematic viewpoint, a clear separation between the two chemotypes was achieved only when epicuticular hydrocarbons and essential oils were considered as chemosystematic characters.  相似文献   
149.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
150.
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号